Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry
نویسندگان
چکیده
Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM) volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I), 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.
منابع مشابه
Longitudinal cortical volume changes correlate with motor recovery in patients after acute local subcortical infarction.
BACKGROUND AND PURPOSE Secondary changes in the volume of motor-related cortical regions and the relationship with functional recovery during the acute stage after cerebral infarction have not been determined. In the present study, we quantified changes in gray matter (GM) volume in motor-related cortical regions and analyzed their correlations to clinical scores in patients with focal cerebral...
متن کاملGrading of Glioma Tumors by Analysis of Minimum Apparent Diffusion Coefficient and Maximum Relative Cerebral Blood Volume
Background: Gliomas are the most common primary neoplasms of the central nervous system. Relative cerebral blood volume (rCBV) could estimate high-grade Gliomas computed with dynamic susceptibility contrast MR imaging which it is artificially lowered by contrast extravasation through a disrupted blood-brain barrier. Objectives: Our intent was to clarify the usefulness of diffusion-weighted m...
متن کاملCortical and subcortical brain alterations in Juvenile Absence Epilepsy
Despite the common assumption that genetic generalized epilepsies are characterized by a macroscopically normal brain on magnetic resonance imaging, subtle structural brain alterations have been detected by advanced neuroimaging techniques in Childhood Absence Epilepsy syndrome. We applied quantitative structural MRI analysis to a group of adolescents and adults with Juvenile Absence Epilepsy (...
متن کاملInitial Experience with Brain Mapping under Awake Craniotomy for Resection of Insular Gliomas of the Dominant Hemisphere
Background & Importance: Insular lobe is located at the depth of sylvian fissure and is hidden by frontal, temporal and parietal lobes in close vicinity of internal capsule and basal ganglia and adjacent to the speech centers in the dominant hemisphere. Thus, radical resection of insular gliomas can be even more difficult. Brain mapping techniques can be used to maximize the extent of...
متن کاملTopographical evaluation of aphasia based on brain vascular territories
Topographical evaluation of aphasic brain lesions can enhance our knowledge of cognitive physiology and plasticity. This prospective study was conducted on 100 stroke-afflicted patients with aphasia admitted in Valie-Asr Hospital (Khorasan, Iran) in 2003. Topography of infarct lesions was detected by a neurologist based on the map of brain vascular territories in CT-scan. Aphasic lesions catego...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017